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1 Introduction
A real symmetric function g : [a, b]n → R, of n variables is the one whose value at any
n-tuple of arguments is the same as its value at any permutation of that n-tuple. These
functions are often the subject of research in different applications. In this paper, we shall
consider symmetric functions that occur naturally when solving the k-means problem
and in cluster analysis (see, e.g., [20, 24, 47]), whereby special importance is attached to
searching for a globally optimal partition of the data that have only one feature. If the
function g attains its global minimum on [a, b]n, then generally there exist at least n! points
from [a, b]n where this global minimum is attained. Namely, if the point (ξ⋆

1 , . . . , ξ⋆
n) ∈

1Corresponding author: Rudolf Scitovski, e-mail: scitowsk@mathos.hr, telephone number: +385-31-
224-800, fax number: +385-31-224-801
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argmin g, then also (η⋆
1, . . . , η⋆

n) ∈ argmin g, where (η⋆
1, . . . , η⋆

n) is any permutation of the
numbers (ξ⋆

1 , . . . , ξ⋆
n).

We consider a global optimization problem of a symmetric function g : [a, b]n → R,
which satisfies the Lipschitz condition on [a, b]n

|g(x) − g(y)| ≤ L∥x − y∥, ∀x, y ∈ [a, b]n, (1)

where L > 0 is the Lipschitz constant. Furthermore, we shall simply refer to the set of all
such functions as Lipschitz continuous functions and represent this set as LipL[a, b]n. The
set LipL[a, b]n is extensive and covers a wide range of applications. Among many recent
works related to the global optimization problem for Lipschitz continuous functions, let
us mention only [6, 10, 17, 18, 32, 34, 36, 39, 40, 54]. There are several approaches
for solving this problem. Some of the most frequently referred ones are: partition and
branch-and-bound strategies [23, 31, 36, 38, 39, 41, 42, 51], grid and random search
[2, 15, 19, 25, 26, 33, 46, 52, 54], interval analysis [17]. Thereby, parallel programming
is often used in the implementation of algorithms [16, 46]. It is believed that the first
methods for searching for a global minimum of a univariate Lipschitz continuous function
f : [a, b] → R were proposed by Pijavskiy [35] and Shubert [43] in 1972, independently
and at the same time. After that, numerous modifictions and other approaches came into
existence (see, e.g., [6, 23, 26–28, 45, 48, 53]).

In this paper, we consider a global optimization problem for Lipschitz symmetric
functions g and propose an efficient method for searching for a global minimum of such
functions. Let us first mention two illustrative examples of symmetric functions which
will be used later as test-functions.2

Example 1. We consider the function g : [0, 11] × [0, 11] → R

g(y1, y2) = −1
5(y2

1 + y2
2) + 2y1y2 cos y1 cos y2

This differentiable symmetric function satisfies the Lipschitz condition with the constant
L ≈ 150 and attains its local minimum in two points, and the global minimum gmin =
−147.105 in two points y⋆ = (9.56028, 6.45769), y⋆⋆ = (6.45769, 9.56028) (see Fig. 4).

Example 2. Let A = {ai ∈ R : i = 1, . . . , m} be a given set of real numbers. The elements
of the set A should be partitioned into 1 ≤ k ≤ m nonempty disjoint clusters π1, . . . , πk.
If d : R×R → R+, R+ = [0, +∞⟩ is some distance-like function (see, e.g., [24, 47]), then
to each cluster πj from the partition Π = Π(π1, . . . , πk) we can associate its center

cj = c(πj) := argmin
x∈conv(πj)

∑
ai∈πj

d(x, ai),

2Other examples can be found in [7, 11, 31, 36] and on the web site
http://www.geatbx.com/docu/fcnindex-01.html.
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and by introducing the objective function

F(Π) =
k∑

j=1

∑
ai∈πj

d(cj, ai),

we can define the quality of a partition. By using the minimal distance principle [24,
47] the problem of searching for a optimal partition is reduced to the following global
optimization problem

min
(z1,...,zk)∈conv Ak

F (z1, . . . , zk), F (z1, . . . , zk) =
m∑

i=1
min

j=1,...,k
d(zj, ai). (2)

The objective function F is a symmetric Lipschitz continuous [36, 37] function which can
have a great number of independent variables, it does not have to be either convex or
differentiable and it generally may have several local and global minima. Therefore, this
becomes a complex global optimization problem, which can be found in the literature as a
center-based clustering problem [21, 24, 37, 44, 47]. It is clear that the problem becomes
even more complex if data have several features.

The most popular algorithm for finding locally optimal partitions is the k-means al-
gorithm [14, 20, 24]. By providing a good initial approximation (see, e.g., [36, 49]), this
method can produce acceptable solutions. In case we do not have a good initial approxima-
tion, multi-run algorithms with various random initializations are usually recommended
[29].

Global optimization problems for a symmetric Lipschitz continuous function often oc-
cur in various applications. For example, in [5], the global optimization problem that arises
in the detection of Gravitational Waves is considered. Thereby the objective function is
symmetric Lipschitz continuous with unavailable derivatives and many local maxima.

The paper is organized as follows. In the next section, the DIRECT method for Lips-
chitz global optimization is briefly described. In Section 3, a modification of the DIRECT
method referred to as SymDIRECT is described for symmetric Lipschitz continuous func-
tions with special emphasis on the process of dividing hyperrectangles for a subdomain
of the symmetric function. Initially, as a motivation, we briefly describe this process in
R2, although it is not possible to naturally extend the generalization on Rn. Hence, the
process in R3 and Rn is analyzed and illustrated in detail. In Section 4, the SymDIRECT
algorithm for Lipschitz global optimization of a symmetric function is described. Numer-
ical results on a set of global optimization test problems are provided in Section 5. The
application of SymDIRECT method to data clustering is emphasized in particular. The
conclusions and future work are discussed in Section 6.
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2 DIRECT method for Lipschitz global optimization
A derivative-free, deterministic sampling method for global optimization on a bound-
constrained region named Dividing Rectangles (DIRECT) was proposed by [23]. This
method emerged as a natural generalization of the method proposed by Pijavskiy [35]
and Shubert [43]. For a Lipschitz function f ∈ LipL[a, b] condition (1) can be written as

−L ≤ f(x) − f(y)
x − y

≤ L, x ̸= y,

from where it can be easily seen that the following holds:

f(x) ≥ f(c) + L(x − c), x ≤ c,

f(x) ≥ f(c) − L(x − c), x ≥ c,

where c = a+b
2 is the midpoint of the interval [a, b]. As a result, we easily obtain a simple

concave function which represents the lower bound of the function f and which on the
interval [a, b] attains the least B-value

B(c, d) = f(c) − L d, d = b−a
2 , (3)

that depends only on the value of the function f in the midpoint of the interval [a, b] and
on the width of the interval (see Fig 1).

a c b

x 7→ f(x)

x 7→ f(c) + L(x − c) x 7→ f(c) − L(x − c)

Figure 1: Lower bound of the function f

The DIRECT algorithm is based on the fact that the interval [a, b] with center c = a+b
2 is

divided into three equal parts, whereby the center of the middle subinterval is once again
the point c. For each subinterval, the B-value is determined according to (3) and the
subinterval with the least B-value is divided further. The global minimum of the function
f is then searched for between the points representing the centers of subintervals. Based
upon this, [23] proposed the following constructive idea.

Assuming that at a given stage in the algorithm there are m subintervals [α1, β1], . . . , [αm, βm]
with centers c1, . . . , cm and half-widths d1, . . . , dm. To each interval we associate the point

Ti = (di, f(ci)), i = 1 . . . , m.

These points can be displayed graphically as in Fig. 2. One notices that the points are
arranged in columns, and sorted according to the function value of the center of each
corresponding interval.
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The straight line with the slope L which passes through the point Ti has an ordinate-
intercept which represents the B-value of the function f on the interval [αi, βi]. Therefore
the least B-value, and thereby also the interval to be divided further, is chosen among
B-value intervals that are represented in Fig. 2 by points lying on the lower edge of the
convex hull of the points Ti. These intervals are called potentially optimal intervals, and
they can be defined without using the Lipschitz constant L (see Definition 1).

d0d1d2d3

di

f HciL

Figure 2: Clusters of points Ti = (di, f(ci)), i = 1 . . . , m

Generally, we consider a global optimization problem for the Lipschitz function g : Ω →
R, Ω = ∏n

i=1[ai, bi]. By using mapping T : Ω → [0, 1]n,

T (x) = D(x − u), D = diag
(

1
b1−a1

, . . . , 1
bn−an

)
, u = (a1, . . . , an), (4)

which maps a hyperrectangle ∏n
i=1[ai, bi] to a unit hypercube [0, 1]n, a global optimization

problem for the function g is reduced to the global optimization problem for the Lipschitz
function f : [0, 1]n → R, f = g ◦ T −1, where T −1 : [0, 1]n → Ω, T −1(x) = D−1x + u.

By means of a standard strategy (see, e.g., [8, 9, 12, 23]), the unit hypercube [0, 1]n
with the center at the point c = (1

2 , . . . , 1
2) ∈ Rn is divided into smaller hyperrectangles,

out of which one has again the center in the point c. In that way, we obtain new hyperrect-
angles Ri(ci, (h(i)

1 , . . . , h(i)
n )) with centers at points ci = (ζ(i)

1 , . . . , ζ(i)
n ) and half side-lengths

h
(i)
j , j = 1, . . . , n in the direction of the j-th unit vectors ej. If to every hyperrectangle

Ri we associate the “size” of a hyperrectangle as the number di = max{h
(i)
1 , . . . , h(i)

n },
then the aforementioned hyperrectangle may be denoted by Ri(ci, di). Of all available
hyperrectangles we shall single out potentially optimal hyperrectangles according to the
following definition [9, 12, 23]:

Definition 1. Let H be the set of hyperrectangles created by DIRECT after k iterations,
let ϵ > 0 be a positive constant and fmin the best value of the objective function found so
far. A hyperrectangle Rj(cj, dj) ∈ H with center cj and size dj is said to be potentially
optimal if there exists K̃ > 0 such that

f(cj) − K̃dj ≤ f(ci) − K̃di, ∀R(ci, di) ∈ H,

f(cj) − K̃dj ≤ fmin − ϵ|fmin|.
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The recommended value for ϵ is 10−4 [9]. As mentioned earlier, it is shown that it
suffices to divide further only potentially optimal hyperrectangles [7, 9, 23]. If the objective
function is continuous in a neighborhood of a global optimizer, DIRECT converges to the
globally optimal function value [23]. More information about convergence properties of
the method can also be found in [8, 9].

DIRECT is a robust method because it works with black-box function evaluations and
it is insensitive to discontinuities, missing values, and other common problems. The
drawback of the DIRECT method is that sometimes it has problems identifying the exact
solution even if it is close to it [16] or slow convergence when solving multiextremal
problems [19, 30, 31, 42]. Additionally, defining a meaningful stopping criterion is also a
problem [42].

There are numerous papers in which this method for global optimization is analyzed,
modified, enhanced, and tested [3, 4, 9, 13, 16, 26, 51]. In our paper, we propose a
modification of the DIRECT algorithm for Lipschitz global optimization for a symmetric
function.

3 A modification of the DIRECT method for a sym-
metric Lipschitz function

Let us consider a Lipschitz global optimization problem for the symmetric function
g : [a, b]n → R. Suppose that there exists y⋆ = argmin

y∈[a,b]n
g(y). By using the corresponding

mapping (4) the problem is reduced to a global optimization problem for the function
f : [0, 1]n → R, f = g ◦ T −1, where T −1 : [0, 1]n → [a, b]n

T −1(x) = (b − a)x + u, u = (a, . . . , a) ∈ Rn. (5)

Since the function f is symmetric, as mentioned earlier in the Introduction, it suffices
to solve the following global optimization problem [45]:

Find the point x⋆ = argmin
x∈∆

f(x), such that f(x⋆) = inf
x∈∆

f(x), where

∆ = {x ∈ [0, 1]n : x1 ≥ · · · ≥ xn}. (6)

Note that the region ∆ represents the n!-th part of the domain of the function f and in
that way we have significantly reduced the region of searching for the global minimum of
the function f . After finding x⋆ = argmin

x∈∆
f(x), the global minimum point of the initial

function g is given by y⋆ = u + (b − a)x⋆.
The DIRECT method described in Section 2 shall be applied to this special situation.

This means that in the procedure of dividing some hyperrectangle attention should be
paid to the part of the region [0, 1]n it appears in. Thereby, the following situations might
occur:
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(i) If the whole hyperrectangle is located in the region ∆, all rectangles that emerge
by its division will also be contained in the region ∆. All of them are also liable to
further division.

(ii) If a hyperrectangle appears outside the region ∆, the point of the global minimum we
search for cannot appear therein. Hence such hyperrectangles shall not be divided
further.

(iii) If a hyperrectangle lies in the region ∆ only partially, some hyperrectangles that
come into existence by its division can be fully contained in the region ∆ (classified
under case (i)), some might be completely outside the region ∆ (classified under
case (ii)), and some might lie only partially in the region ∆ (again classified under
case (iii)).

Sufficient conditions should be determined for all given cases, and they should be
tested in the iterative procedure. After a certain number of steps, only case (i) will occur
and then it will not be necessary to check any of the conditions (see Example 4 and
Fig. 7).

All hyperrectangles that are at least partially located in the region ∆ are candidates for
further division. A set of potentially optimal hyperrectangles should be identified among
them. This can be done efficiently in the following way. First, a set of all hyperrectangles,
that are at least partially located in the region ∆, is partitioned into clusters, where
in some cluster there are hyperrectangles with equal size. The set of indices of these
clusters of rectangles is denoted by I = {1, . . . , k}. Inside the cluster, hyperrectangles
are sorted according to increasing values of the objective function in their centers. By
choosing from each cluster only the hyperrectangle with the smallest value of the objective
function in its center, we form an expanded set of potentially optimal hyperrectangles
E = {Ri(ci, di) : i ∈ I}. The following lemma from the set E separates the set of potentially
optimal hyperrectangles P .

Lemma 1. [12] Let f : [0, 1]n → R be a Lipschitz function with constant L > 0, let ϵ > 0
be a positive constant and fmin the current best function value. Let E = {Ri(ci, di) : i ∈ I}
be the expanded set of potentially optimal hyperrectangles, and

I1 = {i ∈ I : di < dj}, I2 = {i ∈ I : di > dj}.

Hyperrectangle Rj(cj, dj) ∈ E is potentially optimal according to Definition 1 if

(i) max
i∈I1

f(cj) − f(ci)
dj − di

≤ min
i∈I2

f(cj) − f(ci)
dj − di

, if I1 ̸= ∅ and I2 ̸= ∅, (7)
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and

(ii) ϵ ≤ fmin − f(cj)
|fmin|

+ dj

|fmin|
K, if fmin ̸= 0 (8)

or
(iii) f(cj) ≤ djK, if fmin = 0, (9)

where

K =

min
i∈I2

f(cj)−f(ci)
dj−di

, if I2 ̸= ∅,

L, if I2 = ∅.
(10)

The current minimum value of the objective function is updated by using the set of
potentially optimal rectangles P with centers in the region ∆. Note that in this way it
is possible to determine potentially optimal hyperrectangles, whereby it is not necessary
to know the Lipschitz constant L. In (10), for L it suffices to take some large number.
More detail about the problem of determining the Lipschitz constant and possibilities
referring to elimination of the necessity of specifying the Lipschitz constant can be found
in [26–28, 40–42, 45, 46, 50, 51, 53].

It remains to find an efficient method for identification of those hyperrectangles that
are completely or at least partially located in the region ∆.

3.1 Dividing rectangles in R2

Let us first consider a geometrically simple global optimization problem for a symmetric
function f : [0, 1]2 → R, on which all necessary facts can be noticed easily.

Find the point x⋆ = argmin
x∈∆

f(x), such that f(x⋆) = inf
x∈∆

f(x), where

∆ = {x = (x1, x2) ∈ [0, 1]2 : x1 ≥ x2}. (11)

(a) R ⊂ ∆

V (−1, −1) V (+1, −1)

V (−1, +1) V (+1, +1)

c

(b) R ∩ ∆ ̸= ∅

V (−1, −1) V (+1, −1)

V (−1, +1) V (+1, +1)

c

Figure 3: Rectangle R(c, (h1, h2)) completely or partially contained in the region ∆

Let R(c, (h1, h2)) be a rectangle contained in the unit square [0, 1]2 with center in the
point c = (ζ1, ζ2), and the half side-lengths h1, h2 in the direction of unit vectors e1, e2

and vertices V (σ1, σ2) = (ζ1 + σ1h1, ζ2 + σ2h2), where σ1, σ2 ∈ S = {−1, +1} (see Fig. 3).
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Note first that some point T = (µ1, µ2) lies in the region ∆ if and only if 1 ≥ µ1 ≥
µ2 ≥ 0. It is easy to see that the whole rectangle R lies in the region ∆ if and only if the
vertex V (−1, +1) lies in the region ∆ (see Fig. 3a), and this is fulfilled if and only if there
holds

ζ1 − h1 ≥ ζ2 + h2, (12)

A rectangle is located at least partially in the region ∆ if at least the vertex V (+1, −1)
is located in the region ∆ (see Fig. 3b), i.e. if the following condition is fulfilled

ζ1 + h1 ≥ ζ2 − h2. (13)

By knowing conditions (12) and (13), we can considerably accelerate the procedure of
dividing rectangles while searching for the global minimum of the symmetric function.

Example 3. For a symmetric Lipschitz function from Example 1 we shall conduct the
described modification of the DIRECT algorithm. First, by means of mapping T : [0, 11]2 →
[0, 1]2, T (x) = Dx, where D = diag( 1

11 , 1
11), the problem is normed as a global optimization

problem for the symmetric function f = g ◦ T −1 : [0, 1]2 → R, where T −1(x) = D−1x,
D−1 = diag(11, 11).

0

5

10

0

5

10

-100

0

100

(a) Graph of the function

2 4 6 8 10

2

4

6

8

10

(b) Iterative procedure

Figure 4: Searching for the global minimum of function g(y1, y2) = −1
5(y2

1 + y2
2) +

2y1y2 cos y1 cos y2

By using the aforementioned modification of the DIRECT method, after 21 iterations
we obtain the approximation of the global minimum correct to one decimal place

ŷ = (9.6, 6.5), f(ŷ) = −146.894.

Consequently, 18 rectangles appeared outside the region ∆, 256 within the region ∆ and
9 partially in the region ∆. Also, the total of 245 function evaluations were performed.
Fig. 4b shows a ContourPlot of the function f with the denoted region ∆ and cen-
ters of rectangles generated during the division procedure and in which the value of the
minimizing function has been updated.
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3.2 Dividing rectangles in R3

Unfortunately, the application of the DIRECT method for solving a global optimization
problem for a symmetric function in R3 cannot be obtained directly by generalizing the
conclusion from Subsection 3.1. In the sequel, we consider in detail the problem in R3 since
in that way a generalization for solving a global optimization problem for a symmetric
function in Rn is obtained easily.

Since f is a symmetric function, we shall search only for the point of the global
minimum that lies in the tetrahedron

∆ = {(x1, x2, x3) ∈ [0, 1]3 : x1 ≥ x2 ≥ x3}, (14)

(see the model in Fig. 5a). Note that some point T = (µ1, µ2, µ3) ∈ [0, 1]3 from the region
∆ if and only if 1 ≥ µ1 ≥ µ2 ≥ µ3 ≥ 0.

The following lemma yields conditions by which some parallelepiped R ⊂ [0, 1]3 lies
completely or only partially in tetrahedron ∆.

Lemma 2. Let R(c, (h1, h2, h3)) be a parallelepiped contained in the unit cube [0, 1]3 with
the center c = (ζ1, ζ2, ζ3), half side-lengths hi in the direction of unit vectors ei and vertices
V (σ1, σ2, σ3) = (ζ1 + σ1h1, ζ2 + σ2h2, ζ3 + σ3h3), where σ1, σ2, σ3 ∈ S = {−1, +1}. Then it
holds

(i) R ⊂ ∆ if and only if

ζ1 − h1 ≥ ζ2 + h2 and ζ2 − h2 ≥ ζ3 + h3. (15)

(ii) R ∩ ∆ ̸= ∅ if and only if

(ζ1 + h1 ≥ ζ2 − h2 ≥ ζ3 − h3), or (ζ1 + h1 ≥ ζ2 + h2 ≥ ζ3 − h3). (16)

Proof. Let us notice first that the following holds

ζi + hi ≥ ζi − hi, i = 1, 2, 3. (17)

(i) If R ⊂ ∆, then all vertices of R are contained in ∆, i.e. there holds

ζ1 + σ1h1 ≥ ζ2 + σ2h2 ≥ ζ3 + σ3h3 ∀σ1, σ2, σ3 ∈ S, (18)

from where follows (15).

Conversely, if (15) holds, by using (17), we obtain

ζ1 + h1
(17)
≥ ζ1 − h1

(15)
≥ ζ2 + h2

(17)
≥ ζ2 − h2

(15)
≥ ζ3 + h3

(17)
≥ ζ3 − h3,

from where holds (18), i.e. V (σ1, σ2, σ3) ∈ ∆ for every σ1, σ2, σ3 ∈ S = {−1, +1},
and this means that R ⊂ ∆.
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V (−1, −1, −1) V (+1, −1, −1)

V (+1, +1, −1)V (−1, +1, −1)

V (−1, −1, +1) V (+1, −1, +1)

V (+1, +1, +1)V (−1, +1, +1)

Figure 5: Tetrahedron ∆ and parallelepiped R(c, (h1, h2, h3))

(ii) Suppose that R ∩ ∆ ̸= ∅. This means that at least one of the vertices of the
parallelepiped lower basis is contained in ∆, i.e. there exist σ1, σ2 ∈ S = {−1, +1},
such that V (σ1, σ2, −1) ∈ ∆, i.e.

ζ1 + σ1h1 ≥ ζ2 + σ2h2 ≥ ζ3 − h3.

Since σ1 ≤ 1, we obtain

ζ1 + h1 ≥ ζ1 + σ1h1 ≥ ζ2 + σ2h2 ≥ ζ3 − h3,

which means that there exists σ2 ∈ S, such that V (+1, σ2, −1) ∈ ∆ i.e. there holds
(16).

Conversely, if (16) holds, then at least one of the vertices V (+1, −1, −1), V (+1, +1, −1)
is contained in ∆, so that R ∩ ∆ ̸= ∅.

Example 4. The set of m = 10 uniform distributed random numbers from [0, 1]

A = {0.00837, 0.01431, 0.04052, 0.25126, 0.45654, 0.70427, 0.74395, 0.795, 0.86823, 0.95783}.

should be partitioned into 3 clusters.

In this case, minimizing function (2) attains its local minimum and its global minimum
at the point ẑ and the point z⋆, respectively (see also Fig. 6).

ẑ = (0.81386, 0.45654, 0.07861) ∈ ∆, F (ẑ) = 0.08126,

z⋆ = (0.81385, 0.35390, 0.02106) ∈ ∆, F (z⋆) = 0.06258,

where ∆ = {(x1, x2, x3) ∈ [0, 1]3 : x1 ≥ x2 ≥ x3}.
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ẑ3 ẑ2 ẑ1
F (ẑ) = 0.08126

z⋆
3 z⋆

2 z⋆
1

F (z⋆) = 0.06259

Figure 6: The data and the centers

However, local and global minima are also attained at every point from the unit cube
[0, 1]3, whose coordinates are a permutation of the coordinates of the point ẑ (i.e. the
point z⋆).

After 36 iterations, a modified DIRECT algorithm for this symmetric function attains
a global minimum correct to 4 decimal places, whereby 491 evaluations of function values
were performed. 367, 68 and 24 rectangles appeared completely, partially and outside of
the region ∆, respectively. Dynamics of their appearance per iteration is shown in Fig. 7,
whereas the number of rectangles of equal size per iteration is given in Fig. 8a.

10 20 30 36
Iteration

5

10

15

20

Number of rectangles

Figure 7: Appearance of rectangles inside (green), on boundary (yellow), and outside (red) of
the region ∆

Convergence of the iterative procedure is illustrated in Fig. 8b and Fig. 9. Fig. 8b
shows the data (small black dots) and shifting of cluster centers during the iterative
process. Fig. 9a and Fig. 9b show shifting of values of the objective function and the
approximation error of the global minimum per iteration, respectively.

3.3 Dividing rectangles in Rn

The problem of searching for a global minimum of the symmetric function f : [0, 1]n → R
is generally reduced to optimization in hypertetrahedron

∆ = {(x1, . . . xn) ∈ [0, 1]n : x1 ≥ x2 ≥ · · · ≥ xn}. (19)

Note that some point T = (µ1, . . . , µn) ∈ [0, 1]n is contained in the set ∆ if and only if
µ1 ≥ · · · ≥ µn. The next theorem is a generalization of Lemma 2 and it gives conditions
by which some hyperrectangle completely or partially lies in the region ∆.
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d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

30

20

10

36

0 0.3 0.6 0.9
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Figure 8: Illustration of the iterative process
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Figure 9: Illustration of convergence of the iterative process

Theorem 1. Let R(c, (h1, . . . , hn)) be a hyperrectangle contained in the unit hypercube
[0, 1]n with the center c = (ζ1, . . . , ζn), half side-lengths hi in the direction of unit vector ei

and vertices V (σ1, . . . , σn) = (ζ1 +σ1h1, . . . , ζn +σnhn), where σ1, . . . , σn ∈ S = {−1, +1}.
Then the following holds:

(i) R ⊂ ∆ if and only if the following (n − 1) conditions hold:

ζi − hi ≥ ζi+1 + hi+1, ∀ i = 1, . . . , n − 1 (20)

(ii) R ∩ ∆ ̸= ∅ if and only if there exists σ2, . . . σn−1 ∈ S such that (2n−2 possibilities)

ζ1 + h1 ≥ ζ2 + σ2h2 ≥ · · · ≥ ζn−1 + σn−1hn−1 ≥ ζn − hn. (21)

Proof. Let us notice first that for any x = (x1, . . . , xn) ∈ ∆ ⊂ [0, 1]n there holds

1 ≥ x1 ≥ · · · ≥ xn ≥ 0,

whereby
0 ≤ ζi − hi ≤ xi ≤ ζi + hi ≤ 1, i = 1, . . . , n. (22)

(i) If R ⊂ ∆, then all vertices of hyperrectangle R are contained in the region ∆, i.e.
there holds

ζ1 + σ1h1 ≥ · · · ≥ ζn + σnhn ∀σ1, . . . , σn ∈ S,
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from where follows (20).

Conversely, if (20) holds, let us show that then R ⊂ ∆. Let x = (x1, . . . , xn) ∈ R

be an arbitrary point from R. Because of (20) and (22) for all i = 1, . . . , n − 1 there
holds

xi

(22)
≥ ζi − hi

(20)
≥ ζi+1 + hi+1

(22)
≥ xi+1,

and this means that x ∈ ∆.

(ii) Suppose first that R ∩ ∆ ̸= ∅. This means that at least one vertex of R is contained
in ∆, i.e. there exists σ1, . . . , σn ∈ S, such that V (σ1, . . . , σn) ∈ ∆, i.e. the following
holds:

ζ1 + σ1h1 ≥ ζ2 + σ2h2 ≥ · · · ≥ ζn−1 + σn−1hn−1 ≥ ζn + σnhn.

Since −1 ≤ σi ≤ 1, we obtain

ζ1 + h1 ≤ ζ1 + σ1h1 ≥ ζ2 + σ2h2 ≥ · · · ≥ ζn−1 + σn−1hn−1 ≥ ζn + σnhn ≤ ζn + hn.

Hence there exists σ1, . . . , σn−1 ∈ S, such that (21) holds.

Conversely, if there exists σ1, . . . , σn ∈ S, such that (21) holds, then the vertex
V (+1, σ2, . . . , σn−1, −1) is contained in ∆, so that R ∩ ∆ ̸= ∅.

4 SymDIRECT – an algorithm for Lipschitz global opti-
mization for a symmetric function

For the given symmetric Lipschitz function g : [a, b]n → R we first define the function
f = g ◦ T −1 : [0, 1]n → R, where mapping T −1 is given by (5).

The global minimum of the function f will be searched for in the region ∆ given
by (19) starting by dividing a hypercube [0, 1]n in the way described in [8, 9, 12, 23].
Thereby if some hyperrectangle obtained in the process of dividing a potentially opti-
mal hyperrectangle falls outside the region ∆, it should not be divided further. If such
a hyperrectangle lies in the region ∆ at least partially, it will be divided further into
corresponding subhyperrectangles. Subsequently, only subhyperrectangles lying at least
partially in the region ∆ will be analyzed. This shall be checked by means of conditions
(20)–(21). Every hyperrectangle is associated with its “size” defined as the length of the
maximal side.

The following algorithm searches for the position in [0, 1]n for the hyperrectangle
R(c, (h1, . . . , hn)) ⊂ [0, 1]n with the center at the point c = (ζ1, . . . , ζn), half side-lengths
hi in the direction of unit vectors ei and vertices V (σ1, . . . , σn) = (ζ1+σ1h1, . . . , ζn+σnhn),
where σ1, . . . , σn ∈ S = {−1, +1}: is R partially or completely contained in the region ∆
or not contained in ∆ at all.
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Special attention should be paid to the optimization of checking the conditions from
Theorem 1. Firstly, in the first 16 lines of the algorithm it is successively checked whether
at least one of 2n−2 conditions from (21) is fulfilled. If none of the mentioned conditions is
fulfilled, R lies outside ∆ and it is not considered further. If at least one of the mentioned
conditions is fulfilled, R is at least partially contained in ∆. In that case, (n−1) conditions
from (20) are checked in lines 19 − 24. Only when these conditions are fulfilled, we may
conclude that R is completely contained in ∆. In Algorithm 1, this procedure is optimized.

Algorithm 1 Searching for the position of hyperrectangle
R(c, (h1, . . . , hn)), c = (ζ1, . . . , ζn)

1. Q := 1, σ2 := 1
2. for i := 1 to n − 2 do
3. σ1 := σ2
4. if ζi + σ1hi ≥ ζi+1 + hi+1 then
5. σ2 := 1
6. else
7. if ζi + σ1hi ≥ ζi+1 − hi+1 then
8. σ2 := −1
9. else

10. Q := 0
11. exit for loop
12. if Q = 1 then
13. if ζn−1 + σ2hn−1 ≥ ζn − hn then
14. Q := 1
15. else
16. Q := 0
17. if Q = 0 then
18. hyperrectangle R * ∆
19. if Q = 1 then
20. T = 1
21. for i = 1, . . . , n − 1 do
22. if ζi − hi < ζi+1 + hi+1 then
23. T = 0
24. exit for loop
25. if T = 0 then
26. condition (20) is not fulfilled: hyperrectangle R is

partially in ∆
27. if T = 1 then
28. condition (20) is fulfilled: hyperrectangle R ⊂ ∆

Suppose in some step of the iterative process we have at our disposal a certain number
of hyperrectangles grouped according to the size of hyperrectangles, and in every group
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hyperrectangles are sorted according to the value of the function in their centers. Note that
the partition of these groups corresponds to the partition of the points Ti shown in Fig. 2.
From every group we separate a hyperrectangle with the smallest function value of the
center constructing in that way an expanded set of potentially optimal hyperrectangles E .
Applying Lemma 1, from this set we separate a set of potentially optimal hyperrectangles
P. All hyperrectangles from the set P are divided further, and the global miminum
(being searched for) is updated using the hyperrectangles in the set P, having centers
in the region ∆. As we have mentioned earlier in Section 2, there remains the problem
of defining a meaningful stopping criterion (see, e.g., [7, 11, 23, 42]. Except for some
special situations where the global optimum is known (see Example 3, Example 4, and
Section 5), our SymDIRECT algorithm will generally be stopped when either the size of a
hyperrectangle in the division procedure becomes smaller than some number η > 0 given
in advance or a maximum number of iterations (imax) is performed.

Algorithm 2 (SymDIRECT)
1. Let cmin be the center of hypercube [0, 1]n, d = 0.5, 0 < η < d, fmin = f(cmin),

imax ≥ 1;
2. for iter = 1, . . . , imax do
3. Let H be the set of current hyperrectangles which completely or only partially

lies in ∆;
4. Group all hyperrectangles from H on the basis of their size, and within each

group sort hyperrectangles according to the function values of their centers;
5. Hyperrectangles with a smaller function value from each group form an ex-

panded set of potentially optimal hyperrectangles E ;
6. According to Lemma 1 from the set E , form a set of potentially optimal

hyperrectangles P;
7. for R ∈ P do
8. divide R into subhyperrectangles r1, . . . , rs;
9. drop hyperrectangle R

10. for i = 1, . . . , s do
11. apply Algorithm 1 to ri

12. if ri * ∆ then
13. drop ri

14. else
15. determine the size di, center ci and function value f(ci);
16. update minimal size d and and (cmin, f(cmin))
17. end if
18. end for
19. end for
20. if d ≤ η, STOP
21. end for
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4.1 Some remarks on the convergence of the algorithm
The convergence of the DIRECT algorithm is proved in [8, 9]. Various modifications of this
algorithm (see, e.g., [5, 30, 31]) by convergence analysis rely on or directly refer to the
mentioned proof of convergence of the DIRECT algorithm.

Our modification of the DIRECT algorithm is adopted to solving the global optimiza-
tion problem for a symmetric Lipschitz continuous function. Thereby, in the process of
dividing the unit hypercube [0, 1]n only hyperrectangles that are completely or only par-
tially contained in the region ∆ are considered. Therefore the convergence properties of
the DIRECT algorithm can be directly applied to our case.

5 Numerical implementation of the method and ap-
plication to data clustering

The SymDIRECT global optimization method for a symmetric function is compared with
the standard DIRECT global optimization method by using an open-source MATLAB im-
plementation by Finkel [7] (see also [11]) and with the Firefly heuristic algorithm [52],
which has been shown to be superior to both Particle Swarm Optimisation Algorithm and
Genetic Algorithm in terms of both efficiency and success rate3. First, the aforementioned
methods will be tested on several standard test functions, and after that their efficiency
will be compared with respect to solving a center-based clustering problem for the data
that have only one feature.

5.1 Testing on standard test functions
Some standard test functions available on http://www.geatbx.com/docu/fcnindex-01.html
(see also [1, 7, 11]) are often used for testing global optimization methods. First, we have
selected several symmetric functions with two independent variables and the known global
minimum f ⋆. Thereby we use the standard stopping criteria based on percent error [11]
100fmin−f⋆

|f⋆| < ρ if f ⋆ ̸= 0 and 100fmin < ρ if f ⋆ = 0. We use ρ = 0.01 because it is the
value originally used by [23].

(a) f(x1, x2) = x1x
2
2 + x2x

2
1 − x3

1 − x3
2 (Alolyan’s function)

xi ∈ [−1, 1], x⋆ = (−1
3 , 1), f ⋆ = −32

27 = −1.18519.

(b) f(x1, x2) = − cos x1 cos x2 e−((x1−π)2+(x2−π)2) (Easom’s function)
xi ∈ [−30, 30], x⋆ = (π, π), f ⋆ = −1,

(c) f(x1, x2) = 20 + x2
1 + x2

2 − 10(cos 2πx1 + cos 2πx2) (Rastrigin’s function)
xi ∈ [−5, 5], x⋆ = (0, 0), f ⋆ = 0,

3All the experiments were executed on a computer with a 2.00 GHz Intel Pentium Core 2 Duo CPU
with 4GB of RAM.
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(d) f(x1, x2) =

 5∑
j=1

j cos((j + 1)x1 + j)

  5∑
j=1

j cos((j + 1)x2 + j)

 (Shubert’s function)

xi ∈ [−10, 10]. Attains global minimum f ⋆ = −186.72154 at 18 different points.

Since these are simple test functions, all algorithms found the required global minimum
fast and easily. Table 1 shows the required number of function evaluations necessary by
SymDIRECT, DIRECT and the Firefly heuristic algorithm. It is shown that SymDIRECT
requires significantly less function evaluations than other algorithms.

Methods Alolyan Easom Rastrigin Shubert

SymDIRECT 107 867 347 1 573
DIRECT 481 6 965 379 2 967
Firefly 360 387 200 9 100 56 760

Table 1: Number of function evaluations

The method was also tested on the test function with several independent variables
[31]

f(x1, . . . , xn) =
n∑

i=1

n∑
j=1

(xixj + a cos xi cos xj), xi ∈ [−5, 5]. (23)

Testing was conducted for n = 2, . . . , 7. The SymDIRECT algorithm shows significantly
better results compared to the standard DIRECT algorithm, what is illustrated in Fig. 10
by the necessary number of function evaluations.
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Figure 10: The number of function evaluations for the test function (23)

5.2 Center-based clustering problem for the data having only
one feature

Our method will also be tested on the center-based clustering problem for the data that
have only one feature (see Example 2). The data are constructed similarly to [37]. In
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interval I = [0, 100], we choose k centers c1, . . . , ck ∈ I at random. The data set A
containing m = 100 randomly chosen real numbers from the interval I is generated in the
following way:

(i) let i1, . . . , ik be randomly generated integers such that ∑k
s=1 is = m;

(ii) in the neighborhood of the center cs we generate a set As, which consists of is

random real numbers from N (cs, 10);

(iii) A = ∪k
s=1 As.

The data set A = {a1, . . . , am} will be partitioned into 1 ≤ k ≤ m nonempty disjoint
clusters π1, . . . , πk by solving center-based clustering problem (2), where d(x, y) = |x−y|.
Let c⋆

1, . . . , c⋆
k ∈ I be the reconstructed centers obtained in the following way.

(i) Applying SymDIRECT for solving global optimization problem (2) for the data set A
and with some accuracy η > 0 we obtain ĉ1, . . . , ĉk ∈ I;

(ii) Applying the k-means algorithm (see, e.g., [24, 29, 49]) with the initial approxima-
tion ĉ1, . . . , ĉk we obtain reconstructed centers c⋆

1, . . . , c⋆
k ∈ I.

The SymDIRECT global optimization method for a symmetric function is compared with
the standard DIRECT global optimization method and the Firefly heuristic algorithm
when solving global optimization problem (2) with the data set A. For the given initial
approximation (c(0)

1 , . . . , c
(0)
k ), the mentioned algorithms generate the sequence of approx-

imations (c(i)
1 , . . . , c

(i)
k ), i = 1, 2, . . . as long as the following stopping criterion is not

fulfilled:
max
1≤s≤k

|c(i)
s − c⋆

s| < α,

whereby we use α = 0.01.

Methods k = 3 k = 4 k = 5 k = 6 k = 7

SymDIRECT 0 : 0 : 02 0 : 0 : 06 0 : 00 : 27 00 : 15 : 28 0 : 20 : 45
DIRECT 0 : 0 : 08 0 : 1 : 23 0 : 13 : 57 16 : 47 : 13 34 : 45 : 32
Firefly 0 : 3 : 54 0 : 6 : 23 0 : 06 : 37 00 : 10 : 42 0 : 08 : 27

Table 2: CPU time (hh:mm:ss)

For k = 3, 4, 5, 6, 7, Table 2 and Table 3 show the required CPU time (in sec) and the
required number of function evaluations, respectively.

Similar evaluations were carried out for different values of α by using the DIRECT and
the SymDIRECT algorithm. Numerical results are compared according to the necessary
CPU time (in sec) and the number of function evaluations. Both criteria show the superior
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Methods k = 3 k = 4 k = 5 k = 6 k = 7

SymDIRECT 869 3 091 7 513 108 773 214 341
DIRECT 5 097 50 861 160 189 1 142 959 2 012 589
Firefly 610 380 939 000 1 011 120 1 611 160 1 279 980

Table 3: Number of function evaluations
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Figure 11: Necessary CPU time (in sec) for solving the center-based clustering problem

efficiency of our algorithm. For example, Fig. 11 shows the necessary CPU time (in sec)
depending on the number of clusters k in both algorithms and for various values of α.

Based upon the results given in Table 2 and Table 3 and Fig. 11, superiority of the
proposed SymDIRECT global optimization method for a symmetric function is shown: the
number of function evaluations is significantly less than by the other two compared algo-
rithms, and the CPU time is considerably shorter than by the standard DIRECT algorithm.
What is unusual at first sight is that the CPU time needed by the Firefly heuristic algo-
rithm decreases with an increase in the number of clusters. This effect occurs due to the
character of the algorithm itself and the fact that an increase in the number of clusters
causes the number of points in the hypercube [0, 1]n where the global minimum is attained
to increase significantly. For example, for k = 7, the global minimum of the corresponding
functional (2) is attained at as many as 7! = 5040 points from the hypercube [0, 1]7.

Let us mention that comparative data for SymDIRECT in Table 2 and Table 3 could be
even better if some procedures in the corresponding MATLAB software were optimized.
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6 Conclusions
A global optimization problem for a symmetric Lipschitz function is often found in various
applications. It was shown that the proposed SymDIRECT method is efficient when it comes
to solving such problems. It should be especially stressed that this method can be used
efficiently for solving complex center-based clustering problems for the data having only
one feature.

It would be very interesting to expand this method to functions that are symmetric
in two or more vector variables (n-tuples). Such functions appear in characterizations of
zero derivative points (see [55, 56]).

In addition, it could be analyzed in a similar way how some other known methods of
global optimization could be adapted for the case of a symmetric function. For exam-
ple, we could try to conduct such analysis for the αBB method [10, 34], the Generating
Set Search algorithm [16, 25], the Multilevel Coordinate Search method [19] or global
optimization methods based on response surfaces [22].
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